PDF] Modeling the shape and composition of the human body using dual energy  X-ray absorptiometry images

PDF] Modeling the shape and composition of the human body using dual energy X-ray absorptiometry images

4.9
(279)
Write Review
More
$ 27.00
Add to Cart
In stock
Description

These parameters are novel body composition features that uniquely identify body phenotypes of different groups and predict mortality risk as a function of body shape parameters. There is growing evidence that body shape and regional body composition are strong indicators of metabolic health. The purpose of this study was to develop statistical models that accurately describe holistic body shape, thickness, and leanness. We hypothesized that there are unique body shape features that are predictive of mortality beyond standard clinical measures. We developed algorithms to process whole-body dual-energy X-ray absorptiometry (DXA) scans into body thickness and leanness images. We performed statistical appearance modeling (SAM) and principal component analysis (PCA) to efficiently encode the variance of body shape, leanness, and thickness across sample of 400 older Americans from the Health ABC study. The sample included 200 cases and 200 controls based on 6-year mortality status, matched on sex, race and BMI. The final model contained 52 points outlining the torso, upper arms, thighs, and bony landmarks. Correlation analyses were performed on the PCA parameters to identify body shape features that vary across groups and with metabolic risk. Stepwise logistic regression was performed to identify sex and race, and predict mortality risk as a function of body shape parameters. These parameters are novel body composition features that uniquely identify body phenotypes of different groups and predict mortality risk. Three parameters from a SAM of body leanness and thickness accurately identified sex (training AUC = 0.99) and six accurately identified race (training AUC = 0.91) in the sample dataset. Three parameters from a SAM of only body thickness predicted mortality (training AUC = 0.66, validation AUC = 0.62). Further study is warranted to identify specific shape/composition features that predict other health outcomes.

Body composition by DXA - ScienceDirect

PDF) Modeling the shape and composition of the human body using

Body composition with dual energy X-ray absorptiometry: from basics to new tools. - Abstract - Europe PMC

Frontiers Comparison of computed tomography and dual-energy X-ray absorptiometry in the evaluation of body composition in patients with obesity

PDF] Modeling the shape and composition of the human body using dual energy X-ray absorptiometry images

PDF) Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method

PDF) Tracking fat-free mass changes in elderly men and women using single-frequency bioimpedance and dual-energy X-ray absorptiometry: A four-compartment model comparison

PDF) Percent body fat via DEXA: Comparison with a four-compartment model

Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning

Arm lean mass determined by dual-energy X-ray absorptiometry is superior to characterize skeletal muscle and predict sarcopenia-related mortality in cirrhosis